ในการวิเคราะห์ทางสถิติ T-test เป็นวิธีที่นิยมใช้ในการพิจารณาว่าข้อมูลสองกลุ่มมีความแตกต่างกันอย่างมีนัยสำคัญหรือไม่ การทดสอบนี้มักใช้ในหลายสาขา เช่น การแพทย์ วิศวกรรมศาสตร์ สังคมศาสตร์ และอื่นๆ
การทดสอบ T-test มีอยู่สองประเภท การทดสอบ T-test dependent และ T-Test independent ในบทความนี้ เราจะสำรวจความแตกต่างระหว่างการทดสอบทั้งสองนี้และเวลาที่จะใช้
การทดสอบ T-test dependent
T-test dependent หรือที่รู้จักกันในชื่อ T-test คู่ ใช้เพื่อเปรียบเทียบค่าเฉลี่ยของข้อมูลสองกลุ่มที่เกี่ยวข้องกัน ทั้งสองกลุ่มนี้ถือว่าเป็นบุคคลเดียวกัน
การทดสอบ T-test dependent เป็นประโยชน์เมื่อคุณต้องการตรวจสอบว่าการรักษาหรือการทดลองมีผลต่อผลลัพธ์เฉพาะหรือไม่ ตัวอย่างเช่น หากคุณต้องการทราบว่ายาชนิดใหม่มีประสิทธิภาพมากกว่ายาหลอกหรือไม่ คุณสามารถใช้การทดสอบค่า T-test dependent เพื่อเปรียบเทียบคะแนนของผู้ป่วยกลุ่มเดียวกันก่อนและหลังการรักษา
ในการดำเนินการทดสอบ T-test dependent คุณต้องมีตัวแปรต่อเนื่องและตัวแปรหมวดหมู่ ตัวแปรต่อเนื่องคือผลลัพธ์ที่คุณต้องการวัด ในขณะที่ตัวแปรหมวดหมู่คือกลุ่มที่คุณต้องการเปรียบเทียบ ตัวอย่างเช่น คุณสามารถใช้การทดสอบ T-test dependent เพื่อเปรียบเทียบคะแนนการทดสอบของนักเรียนที่ทำแบบทดสอบเดียวกันสองครั้ง ก่อนและหลังการสอนได้เช่นกัน
การทดสอบ T-Test independent
การทดสอบ T-Test independent หรือที่เรียกว่า T-test ที่ไม่จับคู่ ใช้เพื่อเปรียบเทียบค่าเฉลี่ยของข้อมูลสองกลุ่มที่ไม่เกี่ยวข้องกัน ทั้งสองกลุ่มนี้ถือว่าเป็นอิสระเนื่องจากขึ้นอยู่กับบุคคลหรือรายการที่แตกต่างกัน
การทดสอบ T-test อิสระมีประโยชน์เมื่อคุณต้องการตรวจสอบว่ามีความแตกต่างอย่างมีนัยสำคัญระหว่างสองกลุ่มหรือไม่ ตัวอย่างเช่น หากคุณต้องการทราบว่ามีความแตกต่างอย่างมีนัยสำคัญระหว่างคะแนนสอบของนักเรียนที่เข้าเรียนในโรงเรียนสองแห่งที่แตกต่างกันหรือไม่ คุณต้องใช้การทดสอบ T-Test independent
ในการทำการทดสอบ T-Test independent คุณต้องมีตัวแปรต่อเนื่องสองตัว หนึ่งตัวสำหรับแต่ละกลุ่ม การทดสอบ T-Test independent จะถือว่าทั้งสองกลุ่มมีความแปรปรวนเท่ากันและเป็นไปตามการแจกแจงแบบปกติ หากไม่เป็นไปตามสมมติฐานเหล่านี้ คุณสามารถใช้การทดสอบแบบไม่อิงพารามิเตอร์ เช่น การทดสอบ Mann-Whitney U
อันไหนมีประสิทธิภาพมากกว่ากัน?
คำตอบสำหรับคำถามนี้ขึ้นอยู่กับคำถามการวิจัยและประเภทของข้อมูลที่คุณมี หากคุณมีกลุ่มข้อมูลที่เกี่ยวข้องกัน คุณควรใช้ T-test dependent หากคุณมีกลุ่มข้อมูลที่ไม่เกี่ยวข้องกัน คุณควรใช้ T-Test independent
อย่างไรก็ตาม T-test dependent มีอำนาจมากกว่า T-Test independent หมายความว่ามีแนวโน้มที่จะตรวจพบความแตกต่างที่มีนัยสำคัญระหว่างสองกลุ่ม ทั้งนี้เนื่องจากการทดสอบ T-test dependent การพิจารณาความแตกต่างระหว่างบุคคลภายในกลุ่มวิชาเดียวกัน
ในทางกลับกัน การทดสอบค่า T-Test independent จะถือว่าความแปรปรวนของทั้งสองกลุ่มมีค่าเท่ากัน ซึ่งในทางปฏิบัติอาจไม่เป็นเช่นนั้นเสมอไป หากความแปรปรวนของทั้งสองกลุ่มแตกต่างกัน การทดสอบ T-Test independent อาจไม่มีประสิทธิภาพในการตรวจจับความแตกต่างที่มีนัยสำคัญระหว่างกลุ่ม
บทสรุป
โดยสรุป T-test dependent และ T-test Independent เป็น T-test สองประเภทที่ใช้ในการวิเคราะห์ทางสถิติ T-test dependent ใช้เพื่อเปรียบเทียบค่าเฉลี่ยของข้อมูลสองกลุ่มที่เกี่ยวข้องกัน ในขณะที่การทดสอบ T-test Independent ใช้เพื่อเปรียบเทียบค่าเฉลี่ยของข้อมูลสองกลุ่มที่ไม่เกี่ยวข้องกัน การเลือกใช้แบบทดสอบนั้นขึ้นอยู่กับประเภทของข้อมูลที่คุณมีและคำถามการวิจัยที่คุณต้องการตอบ
การทดสอบทั้งสองมีจุดแข็งและจุดอ่อน แต่การทดสอบ T-test dependent นั้นมีพลังมากกว่าและมีประสิทธิภาพมากกว่าในการตรวจจับความแตกต่างอย่างมีนัยสำคัญระหว่างกลุ่ม อย่างไรก็ตาม สิ่งสำคัญคือต้องแน่ใจว่าเป็นไปตามสมมติฐานของการทดสอบก่อนที่จะนำไปใช้
ช่องทางติดต่อ
Tel: 0924766638 คุณอาจุ้ย
อีเมล: ichalermlarp@gmail.com
LINE: @impressedu
(หยุดทุกวันอาทิตย์)